TenCate E720
Mid temperature curing, honeycomb bondable, epoxy component prepreg

PRODUCT TYPE
120°C (248°F) cure
Toughened epoxy resin system

TYPICAL APPLICATIONS
• Motor racing
• Marine industries
• General aircraft fittings
• Sporting equipment
• Wide range of engineering applications

SHELF LIFE
Out life
60 days at @ 20°C (68°F)

Storage life
12 months @ -18°C (0°F)

Out life is the maximum time allowed at room temperature before cure.

To avoid moisture condensation:
Following removal from cold storage, allow the prepreg to reach room temperature before opening the polythene bag. Typically the thaw time for a full roll of material will be 4 to 6 hours.

PRODUCT DESCRIPTION
TenCate E720 is a toughened epoxy resin system for cures at 120°C (248°F), pre-impregnated into high performance fibres such as carbon, glass and aramid. It is designed for structural applications in the motor racing and marine industries, TenCate E720 would also suit general aircraft fittings, sporting equipment and a wide range of engineering applications. TenCate E720 is compatible for co-cure with TenCate’s 120°C (248°F) cure resin film EF72 and TenCate’s syntactic core Amlite SC72A. If fire retardant properties are required, consult separate data sheet for TenCate E721-FR.

TENCA E720 PREPREG BENEFITS/FEATURES
• Excellent adhesive properties - ideal for honeycomb sandwich construction without the use of a resin film
• Medium tack level - easily laminates to mould surface
• Good impact resistance
• 60 day shelf life at ambient temperature
• Available in woven fabric and unidirection fibres
• Good surface finish
• Low volatile content - no solvents used during processing

TYPICAL NEAT RESIN PROPERTIES
Density ... 1.2g/cm³ (75 lbs/ft³) at 23°C (73°F)
Tg (DMTA) after 1 hr at 120°C (248°F) Onset: 110°C (230°F); Peak tan δ: 121°C (250°F)

TYPICAL LAMINATE PROPERTIES
HIGH STRENGTH CARBON 280 GSM 5HS T300 (3K) - 0/90° CONFIGURATION WOVEN LAMINATES, CURED 1 HOUR AT 120°C (248°F), RESULTS NORMALISED TO 55% VF.

<table>
<thead>
<tr>
<th>Property</th>
<th>Condition</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>RTD</td>
<td>EN ISO 524-4</td>
<td>621 MPa 90 ksi</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>RTD</td>
<td>EN ISO 524-4</td>
<td>58.4 GPa 8.47 Msi</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Compression Strength</td>
<td>RTD</td>
<td>EN 2650</td>
<td>488 MPa 71 ksi</td>
</tr>
<tr>
<td>Compression Modulus</td>
<td>RTD</td>
<td>EN 2650</td>
<td>70 GPa 10.0 Msi</td>
</tr>
<tr>
<td>In-Plane Shear Strength</td>
<td>RTD</td>
<td>EN ISO 14129</td>
<td>99 MPa 14 ksi</td>
</tr>
<tr>
<td>In-Plane Shear Modulus</td>
<td>RTD</td>
<td>EN ISO 14129</td>
<td>3.5 GPa 0.51 Msi</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>RTD</td>
<td>EN ISO 14125</td>
<td>801 MPa 116 ksi</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>RTD</td>
<td>EN ISO 14125</td>
<td>52.4 GPa 7.6 Msi</td>
</tr>
<tr>
<td>ILSS</td>
<td>RTD</td>
<td>EN ISO 14130</td>
<td>62.1 MPa 9 ksi</td>
</tr>
</tbody>
</table>

Tensile strain to failure was 0.9%

INTERMEDIATE MODULUS CARBON 276 GSM 2X2 TWILL T800 (6K) - 0/90° CONFIGURATION WOVEN LAMINATES, CURED 1 HOUR AT 120°C (248°F), RESULTS NORMALISED TO 55% VF.

<table>
<thead>
<tr>
<th>Property</th>
<th>Condition</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>RTD</td>
<td>EN ISO 527-4</td>
<td>1062 MPa 154 ksi</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>RTD</td>
<td>EN ISO 527-4</td>
<td>68.2 GPa 9.9 Msi</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Compression Strength</td>
<td>RTD</td>
<td>EN 2655</td>
<td>530 GPa 77 ksi</td>
</tr>
<tr>
<td>Compression Modulus</td>
<td>RTD</td>
<td>EN 2655</td>
<td>84.1 GPa 12.2 Msi</td>
</tr>
<tr>
<td>In-Plane Shear Strength</td>
<td>RTD</td>
<td>EN ISO 14129</td>
<td>109 MPa 16 ksi</td>
</tr>
<tr>
<td>In-Plane Shear Modulus</td>
<td>RTD</td>
<td>EN ISO 14129</td>
<td>3.7 GPa 0.54 Msi</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>RTD</td>
<td>EN ISO 14125</td>
<td>866 MPa 126 ksi</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>RTD</td>
<td>EN ISO 14125</td>
<td>63 GPa 9.1 Msi</td>
</tr>
<tr>
<td>ILSS</td>
<td>RTD</td>
<td>EN ISO 14130</td>
<td>60.6 MPa 9 ksi</td>
</tr>
</tbody>
</table>

Tensile strain to failure was 1.4%
RECOMMEND CURE CYCLE

- TenCate E720 can be successfully moulded by vacuum bag, autoclave, or matched die moulding techniques.
- Increase autoclave pressure to 1.4 bar (20 psi) with vacuum applied.
- Vent to atmosphere and raise pressure to 6.2 bar (90 psi) (or max allowed by the core material).
- Increase air temperature at 3°C (5.4°F) /min and hold for 1 hour at 120°C (248°F).
- Allow to cool to 50°C (122°F) before removal of pressure.

CURE PROPERTIES: VISCOSITY PROFILE 30°C TO 150°C

<table>
<thead>
<tr>
<th>Ramp rate (°C(°F) /min)</th>
<th>Min viscosity (Pa.s)</th>
<th>Temp @ min viscosity °C (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 (1)</td>
<td>3.95</td>
<td>91°C (196°F)</td>
</tr>
<tr>
<td>1.0 (1.8)</td>
<td>2.61</td>
<td>96°C (205°F)</td>
</tr>
<tr>
<td>2.0 (3.6)</td>
<td>1.61</td>
<td>105°C (221°F)</td>
</tr>
<tr>
<td>5.0 (9)</td>
<td>0.82</td>
<td>119°C (246°F)</td>
</tr>
</tbody>
</table>
TenCate E720
Mid temperature curing, honeycomb bondable, epoxy component prepreg

TYPICAL ADHESIVE PROPERTIES
Climbing drum peel strength at 20°C (68°F) according to DTD 5577 using 2 plies of 200 g/m² TenCate E720 on Aluminium honeycomb 5.2-¾-25-3003.

HS CARBON 200 GSM 2X2 TWILL T300 TYPE 46% R.W.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Peel strength N/76mm (in-lb/3 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>280 (31.5)</td>
</tr>
<tr>
<td>Bottom</td>
<td>340 (38)</td>
</tr>
<tr>
<td>Mean</td>
<td>310 (35)</td>
</tr>
</tbody>
</table>

EXOTHERM
In certain circumstances, such as the production of thick section laminates rapid heat up rates or highly insulating masters, TenCate E720 can undergo exothermic heating leading to rapid temperature rise and component degradation in extreme cases.

Where this is likely, a cure incorporating an intermediate dwell of 1 hour at 90°C (194°F) is recommended in order to minimize the risk.

PROCESSING
Cut patterns to size and lay up the laminate in line with design instructions taking care not to distort the prepreg. If necessary, the lack of the prepreg may be increased by gentle warming with hot air. The lay-up should be vacuum debulked at regular intervals using a P3 (pin pricked) release film on the prepreg surface, vacuum of 980 mbar (29 in Hg) is applied for 20 minutes.

For autoclave cures, use of a non-perforated release film on the prepreg surface trimmed to within 25-30mm of prepreg edge is recommended for the cure cycle, a vacuum bag should be installed using standard techniques.

TenCate E720 may also be used for single shot production of sandwich structures incorporating honeycomb or foam cores.

HANDLING SAFETY
Observe established precautions for handling epoxy resins and fibrous materials – wear gloves. For further information refer to Material Safety Data Sheet.