Toray AmberTool® Composite Tooling Prepregs

<table>
<thead>
<tr>
<th>Resin</th>
<th>Type</th>
<th>T<sub>g</sub> (Onset)*1</th>
<th>Min Cure Temp</th>
<th>Typical Cure Time and Temp*2</th>
<th>Out Life</th>
<th>Key Product Characteristics</th>
<th>Aerospace</th>
<th>Industrial</th>
<th>Motorsport</th>
<th>Automotive</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HX32-1</td>
<td>NEW</td>
<td>162°C (323°F)</td>
<td>65°C (149°F)</td>
<td>12 hours at 70°C (158°F)</td>
<td>30 days</td>
<td>Long out life for large applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HXR56</td>
<td>NEW</td>
<td>185°C (365°F)</td>
<td>40°C (104°F)</td>
<td>8.5 hours at 50°C (122°F)</td>
<td>50 hours</td>
<td>Quasi-isotropic two-layer product for rapid lamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HX56</td>
<td></td>
<td>185°C (365°F)</td>
<td>40°C (104°F)</td>
<td>8.5 hours at 50°C (122°F)</td>
<td>60 hours</td>
<td>Improved handleability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HX50</td>
<td></td>
<td>190°C (374°F)</td>
<td>40°C (104°F)</td>
<td>8.5 hours at 50°C (122°F)</td>
<td>60 hours</td>
<td>Excellent surface finish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HX42</td>
<td></td>
<td>200°C (392°F)</td>
<td>50°C (122°F)</td>
<td>8 hours at 60°C (140°F)</td>
<td>5 days</td>
<td>Proven system for aerospace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HX40</td>
<td></td>
<td>203°C (397°F)</td>
<td>50°C (122°F)</td>
<td>12 hours at 65°C (149°F)</td>
<td>8 days</td>
<td>Large tooling applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC40</td>
<td></td>
<td>213°C (415°F)</td>
<td>182°C (360°F)</td>
<td>6 hours at 182°C (360°F)</td>
<td>14 days</td>
<td>High service temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 after post cure *2 followed by post cure | Sourced from: *3 Europe *4 North America
TABLE OF CONTENTS

INTRODUCTION TO COMPOSITE TOOLING

STEP-BY-STEP PROCESSING INFORMATION

1. Master Pattern 5
2. Preparation of Materials 6
3. Lamination to Tool 6
4. Debulking 6
5. Autoclave Preparation 10
6. Autoclave Cure 11
7. Removal from Master 12
8. Post Cure Schedules 13
9. Release Preparation/Priming 15
10. In-Service Maintenance 16
11. Repriming Tool Surface 16

APPENDICES

I. Job Sheet for Standard Lay-up 18
II. Autoclave Laminate Constructions 19
III. Processing Procedure for HXR-Series 20
IV. Machining of AmberTool Products 21
V. Ancillary Materials 22
INTRODUCTION TO COMPOSITE TOOLING

TOOLING REINVENTED
The increased use of composites materials is driving the need for more advanced composite tooling solutions. Part manufacturers are demanding tools with longer life and tighter tolerances while pushing for more efficient production methods. The market demands a trusted technology partner that can provide world-class innovation, manufacturing, and service.

With more than 25 years of pedigree in demanding tooling applications, the Toray AmberTool® collection of prepregs comprised of the HX, HXR, and TC series, is sold globally by a proven team of tooling experts. Our comprehensive range of prepregs for aerospace applications cure from 50°C (122°F) while delivering Tg properties up to 213°C (415°F). These materials are available on a wide range of reinforcements, allowing our customers to have complete tool design freedom and flexibility. Toray Advanced Composites is your partner for your next tooling program.

COMPLETE TOOL DESIGN FREEDOM
Toray AmberTool® composite tooling prepregs allow high precision for molded and machined tooling applications with a superior degree of accuracy. We support our products globally, offering customers a complete technical support service including tailored training courses.

For more information, please go to our website www.toraytac.com/tooling
1. THE MASTER PATTERN

(a) Selection of Materials
The selection of suitable materials for the master is of prime importance when striving for dimensional accuracy and optimum surface finish. In order to maximize the benefits of low coefficient of thermal expansion and excellent surface finishes, the following alternative combinations of materials are recommended:

(i) A high-quality epoxy tooling block coated with fully post cured epoxy or vinyl ester surface coat (see Appendix V for suggested ancillary materials);
(ii) Epoxy/wet lay-up splashes;
(iii) There are a number of alternative materials currently in use with Toray AmberTool®; however, any nonspecified materials must be proven by physical testing prior to use;
(iv) Toray particularly warn against the use of nonepoxy tooling block products as they may affect the curing mechanism of the matrix, leading to uncured/poor surface finishes.

(b) Release Coating
Thoroughly degrease the surface using an organic solvent such as Chemlease® Mold Cleaner EZ*, allowing all traces to evaporate by drying at 60°C (140°F) for 30 minutes.
* Alternate mold release cleaners may be used. Please follow manufacturer’s recommendations.

(i) For minimum block seal, producing a satin finish on final mold. Apply 1–2 coats of Chemlease® MPP 712 EZ using a wipe-on, buff-off technique, allowing 30 minutes between coats. After the final coat, allow a minimum of 1 hour to cure at room temperature.

Apply the appropriate mold release as per the manufacturer’s guidelines.¹

(ii) To achieve a gloss finish on the final mold. Apply multiple (12–15) coats of Chemlease® MPP 712 EZ, building up the master surface to a gloss finish that will be repeated on the mold tool.

(c) Vacuum Integrity
In all cases, the master must be proved prior to lamination of the mold tool, by carrying out a “mock cure.” This will enable any potential problems such as lack of vacuum integrity or poor stability under pressure to be checked before any actual laminate construction (see Section 6: Autoclave Cure).

¹ Europe: Chemlease®2185; North America: Frekote® 44-NC or 770-NC
2. PREPARATION OF MATERIALS

Due to the low temperature curing nature of the prepregs, it is essential for out life to be optimized by keeping it in a frozen state at -18°C (0°F) prior to use. At this stage, the customer may find it appropriate to construct a series of templates to enable single-ply kits of materials to be prepared prior to lamination. The following points should be noted:

(a) The material must be allowed to reach room temperature before opening the sealed packaging. This is to avoid the formation of condensation on the material surface as it warms up.

(b) Materials should be cut on a clean stable surface that is not likely to introduce any potential contaminants in the final lay-up. Typical surfaces are a glass sheet, polypropylene, nylon, or rubber.

(c) Individual kits of a single ply each should be prepared and stored in a freezer separately. This will enable operators to ensure that a minimal amount of material is out of the freezer at any time—refer to Appendices I and III for ply type and orientation.

(d) The material can also be precut into a series of conveniently cut squares, typically dimensions of 0.5 m², 0.33 m², and 0.25 m² (10, 6, or 2 sq. ft.).

3. LAMINATION TO TOOL

Appendices I and III provide examples of worksheets with an easy reference for ply type and fiber orientation. Appendix II shows other common laminate constructions. The first and final plies will be lighter surfacing plies (lower fiber areal weights) with the composite core made from the heavier material to bulk up the center of the laminate.

Remove the first appropriate kit of materials from the freezer, and allow to thaw. This is essential to avoid the formation of condensation on the surface.

(a) Trim strips: Lay-up a series of 45° trim strips into all external corners and tight radii, ensure the pattern runs in a consistent direction for aesthetics. Strips should be approximately 40 mm (1.25 inches) wide positioned evenly on the center of the corner.

Lay-up the first ply, carefully cutting and fitting, bearing in mind the following points:

(b) All pieces should be butt joined, no overlaps are permissible at this stage;

(c) The weave pattern should be consistent if the fiber orientation is correct;
(d) Cut material to fit into all external radii and corners, taking care not to disturb the trim strips.

(e) On all internal right-angled corners, allow material to form around angle but by no more than 5 mm (0.25 inch).

(f) On large external radii, the material should be tailored to fit in midpoint of the radius.

(g) Avoid pushing material into corners with a sharp implement, as this is likely to cause unseen damage to fibers and can lead to a structurally weakened laminate.

This procedure is repeated throughout the laminate, with the following additional points for the heavier plies (refer to Appendix I):
HEAVIER PLIES:
For the HXR series please refer to Appendix III for lamination variations
(a) All joints should be staggered between plies with a minimum of 18 mm (0.75 inch) spacing for adjacent plies. Overlaps should be avoided if possible;
(b) **Under no circumstances should any gaps be left as this is likely to cause voids in the completed tool**;
(c) The weave pattern should be consistent if the fiber direction is correct;
(d) Avoid pushing material into corners with a sharp implement.

INTEGRITY SEAL
Some tools will be subjected to a large number of autoclave cycles in service, and there is a possibility that the tool surface may become damaged due to operators cutting on its surface or from impact damage. A leak path could possibly form through the damage site and along a fiber bundle exiting at the trimmed edge of the tool. To avoid this, the tool laminate should be laid up in squares. As an additional barrier to this form of leakage, it is desirable to ensure that all fiber bundles are cut at least twice in the area between the strip where the vacuum bag sealant tape will be applied and the tool edge. This will build up a “picture frame” of cut plies around the vacuum bag seal area.
4. DEBULKING (REFERENCE TO APPENDICES I & III)

It is essential to debulk the prepreg, at least at the stages stated below:

- After ply 1;
- Approximately every subsequent 3 plies (for HXR56 every 2 plies);
- After the final ply has been completed.

This will ensure even consolidation and remove air from the laminate prior to final curing. More complex shapes can sometimes be easier to laminate if more frequent debulks are used, but in these cases, the time factor must be taken into consideration. If a laminate will take more than one day to lay-up, then it must be debulked overnight to ensure that it stays in place.

(a) Cover entire laminate surface with a perforated release film type P3, extending beyond the lay-up by approximately 25 mm (1 inch).

(b) Apply a breather coat of around 350gsm (10.3 oz./yd²) in total to the surface. Tailor to fit to avoid bridging. At this stage, the breather can be omitted from the tightest corners if not practical.

(c) Cover the laminate/assembly with a vacuum bag, ensuring that enough slack has been provided to pull into all corners without any bridging.

(d) Apply full vacuum and leave for 20 minutes.

(e) When removing materials from the surface afterward, be careful not to lift up the previously laminated plies.
5. PREPARATION FOR AUTOCLAVE

(a) Fit a thermocouple underneath the first ply of material on an area that is not a critical mold surface.

(b) Lay in strips of glass rovings every 600 mm (24 inches) around the edge of the laminate, continuing to the area on the periphery about to be covered with breather and described in (d).

(c) Cover entire laminate with a nonperforated release film, extending the edges by around 25 mm (1 inch).

(d) Apply a breather coat of around 700gsm total weight, typically 2 plies of 350gsm (10.3 oz./yd²). Tailor to fit and ensure all areas are interlinked. Fit an extra 2 plies around the periphery between the edge of the laminate and the inside of the vacuum seal. At this stage, it is not advisable to miss breather from any of the surface.

(e) Cover with a vacuum bag, ensuring that enough slack has been provided to pull into all corners without bridging. At this stage, the vacuum pack will appear very bulky, care must be taken to ensure all materials remain in position as the vacuum bag pulls down.

(f) Apply full vacuum pressure and leave for 25 minutes prior to autoclave processing. Check for vacuum integrity and position of tucks in the bag.
6. AUTOCLAVE CURE

Due to the highly reactive nature of the resin systems, it is essential that curing is carried out under the strictest control possible, to avoid deviation and hence possible exotherm during cure:

1. Apply vacuum pressure and hold at 38°C (100°F) for 30 minutes;
2. Apply 1.45 bar (21 psi) with vacuum;
3. Vent to atmosphere, then raise pressure to between 4.15 bar (60 psi) and 6.20 bar (90 psi);
4. Increase air temperature at 0.5–1°C (1–2°F) per minute ramp to the required curing temperature and cure for the stated minimum time.

INITIAL CURING CYCLES (IN HOURS)

Important: Time and temperatures shown are minimums assuming a low mass master model/tool. Increase time at temperature for high mass or thicker master models.

> Initial cure cycles must be followed by a higher temperature post cure for ultimate T_g. If the master used is thin walled, e.g., epoxy/wet lay-up splash, an alternative cure should be used to include a dwell at low temperature. To satisfy this requirement, introduce a dwell at 40°C (104°F) for 2 hours, then continue with the standard cure cycle.

TORAY AMBERTOOL® PREPREGS

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>HX32-1</th>
<th>HX40</th>
<th>HX42</th>
<th>HX50</th>
<th>HXR56</th>
<th>TC40</th>
</tr>
</thead>
<tbody>
<tr>
<td>35°C (95°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°C (104°F)</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>45°C (113°F)</td>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>50°C (122°F)</td>
<td>40</td>
<td>18</td>
<td></td>
<td>8.5</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>55°C (131°F)</td>
<td>24</td>
<td>11</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>60°C (140°F)</td>
<td>18</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65°C (149°F)</td>
<td>20</td>
<td>12</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70°C (158°F)</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°C (167°F)</td>
<td>9</td>
<td>6</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80°C (176°F)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>Exotherm risk increases</td>
<td></td>
</tr>
<tr>
<td>182°C (360°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See page 12</td>
</tr>
</tbody>
</table>
TORAY AMBERTOOL® TC40 BMI INITIAL CURE & REQUIRED POST CURE (SCHEDULE B)

1. Hold laminate under minimum 28” Hg vacuum at room temperature for a minimum of 24 hours prior to cure. Maintain connection to vacuum during transfer to the autoclave.

2. Maintain initial 28” Hg minimum pressure to bag and increase pressure to 95 +/- 5 psi at maximum 1.5 psi/minute while ramping tool to 129°C (265°F) ±10°F at max 1°C (2°F)/minute.

3. Hold at 129°C (265°F) ±5°C (10°F) for 65 ± 5 minutes based upon lagging thermocouple except proceed to next step if lead thermocouple has been at 129°C (265°F) ± 5°C (10°F) for over 90 minutes.

4. Ramp part temperature to 182°C (360°F) ±5°C (10°F) at a maximum 2°C (4°F) per minute. Hold part at 182°C (360°F) ±5°C (10°F) for 120 to 360 minutes based upon the lagging thermocouple.

7. REMOVAL FROM MASTER

Should the tool require a backing structure (i.e., to prevent a large tool from distorting under its own weight), it should be fitted at this stage prior to release from the master. Care should be taken not to induce stresses on removing the tool from the master since it will be mechanically weak at this stage. The mold should be gently eased off the master and lifted evenly all around.
8. POST CURE

The tool should be set up with suitable support around the base with its weight spread as evenly as possible. Carry out any one of the following curing schedules from the product datasheet, e.g., 120°C (248°F) end use = 140°C (284°F) maximum post cure temperature plus dwell for 6 hours.

POST CURE SCHEDULE A (FOR TORAY AMBERTOOL® HX AND HXR-SERIES PRODUCTS):

<table>
<thead>
<tr>
<th>Ramp</th>
<th>1°C (0.6°F)/min to 60°C (140°F)</th>
<th>Dwell for 2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp</td>
<td>1°C (0.6°F)/min to 90°C (194°F)</td>
<td>Dwell for 1 hour</td>
</tr>
<tr>
<td>Ramp</td>
<td>1°C (0.6°F)/min to 120°C (248°F)</td>
<td>Dwell for 1 hour</td>
</tr>
<tr>
<td>Ramp</td>
<td>1°C (0.6°F)/min to 150°C (302°F)</td>
<td>Dwell for 1 hour</td>
</tr>
<tr>
<td>Ramp</td>
<td>1°C (0.6°F)/min to 170°C (338°F)</td>
<td>Dwell for 1 hour</td>
</tr>
<tr>
<td>Ramp</td>
<td>1°C (0.6°F)/min to 190°C (374°F)</td>
<td>Dwell for 6 hours</td>
</tr>
</tbody>
</table>

Cool to 50°C (122°F) at 2.5°C (4.5°F)/min
An alternative post cure schedule may also be used as follows for all Toray AmberTool® products. This is the post cure schedule recommended for the TC40:
It is essential to carry out post curing as close as possible to the above schedules to retain maximum end use properties. In cases where the end use temperature is likely to be lower than 180°C (356°F), the post cure can be modified, providing the final stage is at least 20°C (68°F) higher than maximum end use temperature, and held at this temperature for the appropriate final dwell time (6 hours), e.g., 150°C (302°F) end use = 170°C (338°F) maximum post cure temperature plus dwell for 6 hours.

9. RELEASE PREPARATION/PRIMING

It is essential to consider the correct regime for coating and releasing the mold at this stage:

(a) Wash surface thoroughly with clean water and allow to dry.

(b) Clean surface with mold cleaner1, apply with a clean 100% cotton cloth. While the mold surface is still wet, vigorously wipe the mold dry with a second clean cloth, until the mold is “squeaky clean” by thumb rub test. Frequently exchange saturated cloths for new ones and repeat several times until all residue is removed. Alternatively, test on an “off part” area with a non-silicone adhesive tape.

Mold preparation and primer (follow manufacturer’s guidelines for usage).

(c) For a high-quality finish, apply 1 or 2 coats of mold sealer EZ by wipe on/wipe off, allowing 30 minutes between each coat and at least 1 hour at an ambient temperature to finally cure. Use of this product without a release agent may result in severe damage to the mold.

(d) Apply 1 to 2 coats of mold sealer2 following manufacturer’s instructions. Saturate a clean cloth and wipe on a smooth film of no more than 0.6 m² (6.5 sf) at a time. When the film begins to evaporate at the edges, wipe the surface with a second clean cloth using a circular motion. Repeat until entire mold surface has been covered. Allow 1 hour at an ambient temperature to cure prior to applying mold release.

(e) Apply 6 wipes on/polish off coats of a release agent allowing 15 minutes between coats and 30 minutes for a full cure at ambient temperature. Follow manufacturer’s instructions.

(f) For touch-up coats of your selected release agent, apply 2 coats as before.

1 Europe: Chemlease® Mold Cleaner EZ; North America: Frekote PMC Mold Cleaner, or equivalent
2 Europe: Chemlease® 15 Sealer; North America: Frekote B15 sealer
10. IN-SERVICE MAINTENANCE

Points in general to note are:

(a) Avoid any aggressive abrasion on the surface, i.e., when removing components from the mold.
(b) Avoid cutting into mold surface during lamination.
(c) Do not use excessive force when releasing from the mold.
(d) Follow release agent datasheets as recommended.
(e) Different release agents and different prepregs can have a wide variation in effects on the surface of the mold.

11. REPRIMING MOLD SURFACE

Surface deposits can be removed by fine abrasion by hand with either fine nylon scouring pads or cutting paste. Generally, the use of mechanical means is not recommended.

For touch-up coats, it is best to do preventative maintenance, therefore reapply after 15 releases, or as trials determine. Wipe on and polish off 1 coat and allow a minimum of 15 minutes prior to recommencing lay-up.

(a) The surface should be cleaned with mold cleaner². Change cloths frequently and use liberal quantities of cleaner.
(b) Take mold to 60°C (140°F) for 30 minutes to ensure all moisture/solvent is removed.
(c) Revert back to 9 (d) for all release preparation/priming.
FURTHER INFORMATION
For additional information, contact Toray Advanced Composites at the following locations:

TORAY ADVANCED COMPOSITES
18255 Sutter Blvd.
Morgan Hill, California 95037, USA
T : +1 (408) 465 8500
E : explore@toraytac-usa.com

www.toraytac.com
www.toraytac.com/tooling

Please visit our website to find this case study and more at
www.toraytac.com/success-stories

Cure Capable Mandrel for Aerospace Structures
Featured products: Toray AmberTool® HX42

© 2019. All data given is based on representative samples of the materials in question. Since the method and circumstances under which these materials are processed and tested are key to their performance, and Toray Advanced Composites has no assurance of how its customers will use the material, the corporation cannot guarantee these properties. Toray®, (Toray) AmberTool®, (Toray) Cetex®, (Toray) MicroPlyTM, (Toray) CFRT®, and all other related characters, logos, and trade names are claims and/or registered trademarks of Toray Industries Inc. and/or its subsidiary companies in one or more countries. Use of trademarks, trade names, and other IP rights of Toray Industries Inc. without prior written approval by such is strictly prohibited.
Chemlease® is the registered trademark of Chem-Trend Limited Partnership and Frekote® is the registered trademark of Henkel IP & Holding GmbH.
APPENDIX I. JOB SHEET FOR STANDARD LAY-UP

Below is an example of a typical customer job sheet for a carbon fiber reinforced laminate of standard construction with a thickness of 5.91 mm (0.23 inches).

<table>
<thead>
<tr>
<th>PROCEDURE (GSM)</th>
<th>PLY NO.</th>
<th>FIBER ORIENTATION</th>
<th>PATTERN DIRECTION</th>
<th>OPERATOR(S)</th>
<th>INSPECTED</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trim strips 205 2x2T</td>
<td>-</td>
<td>+/- 45°</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 205 2x2T</td>
<td>1</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>2</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>3</td>
<td>+ 45°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>4</td>
<td>- 45°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>5</td>
<td>90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMINATE MID PLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>6</td>
<td>90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>7</td>
<td>- 45°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>8</td>
<td>+ 45°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 650 2x2T</td>
<td>9</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 205 2x2T</td>
<td>10</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final debulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for autoclave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoclave cure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post cure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation and release prime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX II. AUTOCLAVE LAMINATE CONSTRUCTIONS

COMMON LAMINATE CONSTRUCTIONS
For autoclave cured tools

CARBON FIBER EPOXY LAMINATES
1 ply 205gsm 2x2 Twill.
8 plies 650gsm 2x2 Twill. Approx. thickness = 5.3 mm (0.2 inches).
1 ply 205gsm 2x2 Twill.

Typical application: Medium-sized moldings requiring high stability and low C.T.E.
(Appendix I describes this laminate)
APPENDIX III. PROCESSING PROCEDURE FOR HXR-SERIES

TYPICAL LAY-UP PROCEDURE
For a carbon fiber reinforced laminate using Toray AmberTool® HXR series

<table>
<thead>
<tr>
<th>PROCEDURE (GSM)</th>
<th>PLY NO.</th>
<th>FIBER ORIENTATION</th>
<th>PATTERN DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trim strips 205 2x2T</td>
<td>-</td>
<td>+/- 45°</td>
<td>-</td>
</tr>
<tr>
<td>Laminate 205 2x2T</td>
<td>1</td>
<td>0°</td>
<td>✨</td>
</tr>
<tr>
<td>Debulk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HXR56 101</td>
<td>2</td>
<td>0°</td>
<td>✨</td>
</tr>
<tr>
<td>HXR56 101</td>
<td>3</td>
<td>0°</td>
<td>✨</td>
</tr>
<tr>
<td>LAMINATE MID PLANE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HXR56 101</td>
<td>4</td>
<td>0°</td>
<td>✨</td>
</tr>
<tr>
<td>HXR56 101</td>
<td>5</td>
<td>0°</td>
<td>✨</td>
</tr>
<tr>
<td>Debulk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate 205 2x2T</td>
<td>6</td>
<td>0°</td>
<td>✨</td>
</tr>
<tr>
<td>Preparation for autoclave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoclave cure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPARISON OF HXR* LAY-UP VS. APPENDIX I

<table>
<thead>
<tr>
<th>TORAY AMBERTOOL® SUMMARY</th>
<th>HXR LAY-UP</th>
<th>STANDARD LAY-UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual plies</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Debulks</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total fabric weight</td>
<td>5.41 kg/m²</td>
<td>5.61 kg/m²</td>
</tr>
<tr>
<td>Laminate thickness</td>
<td>5.5 mm</td>
<td>5.91 mm</td>
</tr>
</tbody>
</table>

*Toray AmberTool® HXR is an inherently quasi-isotropic prepreg allowing more efficiency by reducing the number of debulks.
APPENDIX IV. MACHINING OF AMBERTOOL® PRODUCTS

Utilizing the correct machine tool, speeds, and feeds, Toray AmberTool® HXR-series of composite tooling prepregs can be machined, blocked, and prepared to produce a near-net molded surface.

Pocketing*
Surface Feet per Minute (SFM) – 800
RPM – 6.112
Chip Load/Tooth – .004 Feed/Rate - 50”/min.
Axial Depth/Pass – .0625”
Radial Width of Cut – 0.07” (.0025 mm Cusp Height)

3D Contour*
SFM – 800
RPM – 6.112
Chip Load/Tooth – .002 Feed/Rate - 25”/min.**
Axial Depth/Pass – .025”
Radial Width of Cut – 0.07” (.002 mm Cusp Height)

Both conditions use Robb Jack Cutter P/N – PCD-201-16BN (0.5” Ball, 2-Flute PCD).
For more information, refer to RobbJack.com/campaign/composite-machining
* Based on Mori Seiki NV5000AI 30AP.
** Could be increased to 50”/min. depending on the rigidity of the part.
APPENDIX V. ANCILLARY MATERIALS

Suggested Ancillary Materials

Model Materials
Rampf WB-0700 with density matched adhesive and repair paste
Axson Lab 975 and adhesive

Cleaners and Releases
Chemlease® MPP712EZ Sealer
Chemlease® 2185 Mold Release
Chemlease® Mold Cleaner EZ
Chemlease® 15 Sealer EZ
Chemlease® 255 Release Agent
Chemlease® PMR EZ Release Agent

Vacuum Bagging Supplies
Bagging film – Tygavac KM1300
P3 and NP ETFE release film – Tygavac WL5200B P3 & NP
Autoclave breather 350gsm – AW N10
Tacky tape/bag sealant – AT200Y
LOCATIONS AND CAPABILITIES

MANUFACTURING LOCATIONS

TORAY ADVANCED COMPOSITES
18255 Sutter Blvd.
Morgan Hill, CA 95037, USA
Tel: +1 408 465 8500
explore@toraytac-usa.com

TORAY ADVANCED COMPOSITES
Amber Drive, Langley Mill
Nottingham, NG16 4BE, UK
Tel: +44 (0)1773 530899
explore@toraytac-europe.com

OTHER BUSINESS LOCATIONS

TORAY ADVANCED COMPOSITES
2450 Cordelia Road
Fairfield, CA 94534, USA
Tel: +1 707 359 3400
explore@toraytac-usa.com

TORAY ADVANCED COMPOSITES
G. van der Muelenweg 2
7443 RE Nijverdal, NL
Tel: +31 (0)548 633 933
explore@toraytac-europe.com

TORAY PERFORMANCE MATERIALS CORP.
1150 Calle Suerte
Camarillo, CA 93012, USA
Tel: +1 805 482 1722
contact@torayPMC.com

© 2019. All data given is based on representative samples of the materials in question. Since the method and circumstances under which these materials are processed and tested are key to their performance, and Toray Advanced Composites has no assurance of how its customers will use the material, the corporation cannot guarantee these properties. Toray®, (Toray) AmberTool®, (Toray) Cetex®, (Toray) MicroPly™, (Toray) CFRT®, and all other related characters, logos, and trade names are claims and/or registered trademarks of Toray Industries Inc. and/or its subsidiary companies in one or more countries. Use of trademarks, trade names, and other IP rights of Toray Industries Inc. without prior written approval by such is strictly prohibited.

www.toraytac.com/tooling