

## PRODUCT DATA SHEET

### **DESCRIPTION**

Toray MS-4H is a 25.4 mm (1") carbon fiber/epoxy resin compression molding system using high strength standardmodulus (HS) carbon fiber. MS-4H is an excellent low-cost, high performance molding compound that has been qualified to military and commercial applications. It has excellent out time stability and processes very well in mediumto-large heavy parts.

## **PRODUCT TYPE**

| 138°C (280°F) Fast Cure Standard-Modulus Compression |  |
|------------------------------------------------------|--|
| Molding System                                       |  |
|                                                      |  |

#### SHELF LIFE

| Out Life:            | 14 days at 25°C (77°F)   |  |  |  |
|----------------------|--------------------------|--|--|--|
| Frozen Storage Life: | 6 months at-18°C (< 0°F) |  |  |  |

Out life is the maximum time allowed at room temperature before cure.

## **TYPICAL PROPERTIES**

| Fiber Length            | 25.4 mm (1")                                 |
|-------------------------|----------------------------------------------|
| Density                 | 1.48–1.52 g/cc                               |
| Thermal Expansion X,Y   | 5.4–9.0 ppm/°C<br>(3–5 ppm/°F)               |
| T <sub>g</sub> (by DSC) | 191°C (375°F) post cured<br>at 177°C (350°F) |



Europe/Middle East/Africa e explore@toraytac-europe.com t +44 (0)1773 530899



## PRODUCT DATA SHEET

### **MECHANICAL PROPERTIES**

| Property                         | Condition | Method       | Typical Results |           |
|----------------------------------|-----------|--------------|-----------------|-----------|
| Tensile Strength 0°              | RTD       | ASTM D 3039  | 302.0 MPa       | 43.8 ksi  |
| Tensile Modulus 0°               | RTD       | ASTM D 3039  | 42.7 GPa        | 6.2 Msi   |
| Compressive Strength 0°          | RTD       | ASTM D 6484  | 330.3 MPa       | 47.9 ksi  |
| Compressive Modulus 0°           | RTD       | ASTM D 6484  | 50.3 GPa        | 7.3 Msi   |
| Flexural Strength 0°             | RTD       | ASTM D 6272  | 750.2 MPa       | 108.8 ksi |
| Flexural Modulus 0°              | RTD       | ASTM D 6272  | 64.1 GPa        | 9.3 Msi   |
| Open-Hole Comp. Strength         | RTD       | ASTM D 6484  | 265.4 MPa       | 38.5 ksi  |
| Compression after Impact         | RTD       | ASTM D 7137* | 146.2 MPa       | 21.2 ksi  |
| Notched Shear Strength           | RTD       | ASTM D 7078  | 177.9 MPa       | 25.8 ksi  |
| Notched Shear Modulus            | RTD       | ASTM D 7078  | 12.4 GPa        | 1.8 Msi   |
| Bolt Bearing Str. (Single Shear) | RTD       | ASTM D 5961  | 858.4 MPa       | 124.5 ksi |

All items are net molded coupons unless noted

 $^{*}$  Machine Molded, drop weight impact set forth via ASTM D7136-05

All properties based on a fiber volume of 48–50%

Above values derived after post cure of 177°C (350°F) for 1–2 hours

Actual molding technique and conditions, fiber length, and part geometry will affect properties obtained

Data shown for 25.4 mm (1") length material, properties will generally be lower for 12.7 mm ( $\frac{1}{2}$ ") and/or 6.35 mm ( $\frac{1}{4}$ ")

A BMC part's tensile strength is influenced by fiber length, and whether the part is made as a flat laminate stock or fabricated in a net shaped bar 38.1 mm (1.5") wide. Bar stock as a general rule will give higher mechanical strength, sometimes almost twice the tensile strengths of laminate stock. This is due to the orientation of the BMC. The graph below shows the potential strength increases between 25.4 mm and 50.8 mm (1" and 2") BMC in a laminate stock configuration. The data table above is based on 38.1 mm (1.5") wide molded bar stock. Increases from shifting to a 50.2 mm (2") BMC in a bar stock shape would probably increase mechanical properties by 25–30%.

### **PROCESS PARAMETERS**

- Preweigh the desired amount of molding compound
- Preheat molding compound in 71°C ± 8°C (160°F ± 10°F) oven for 10 minutes
- > Form mold charge to approximately fit cavity. Charge cavity with molding compound
- Cure temperature: 138°C–154°C (280°F–310°F)
- Pinch pressure: 250 psi for 15–30 seconds
- Close mold to 2000 psi, hold for 15–30 minutes depending on the part thickness
- ▶ Post cure at 177°C/350°F for 1–2 hours for full properties



## PRODUCT DATA SHEET



% Increase on Average MS-4H, 25.4 mm (1") to MS-4H, 50.8 mm (2")

## **FST DATA ON TORAY MS-4H**

|                                                                                      | Testing Methods                                                                              | Criteria/<br>Requirement                       | Toray MS-4H  |      |      |      |         |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|--------------|------|------|------|---------|
| Testing Type                                                                         |                                                                                              |                                                | #of<br>spec. | Min  | Max  | Avg  | Remarks |
| Vertical Burn, 60 sec:                                                               | FAR 25.853 (a)<br>Appendix F, Part I,<br>(a), 1, (i): vertical<br>burn 60 sec                | Maximum BurnTime, 15 sec                       | 3            | 0    | 0    | 0    | PASS    |
|                                                                                      |                                                                                              | Maximum Burn Length,<br>152.4 mm (6")          | 3            | 0.2  | 0.2  | 0.2  | PASS    |
|                                                                                      |                                                                                              | Maximum Longest Burning<br>Particle, 3 sec     | 3            | None | None | None | PASS    |
| Horizontal Burn,<br>63.5 mm/min (2.5 in/min):                                        | FAR 25.853 (a)<br>Appendix F, Part I,<br>(a), 1, (iv): horizontal<br>burn                    | Maximum Burn Rate,<br>63.5 mm/min (2.5 in/min) | 3            | 0    | 0    | 0    | PASS    |
| 45 Degree Burn, 30 sec:<br>(2), (ii): 45 degree<br>burn, 63.5 mm/min<br>(2.5 in/min) | FAR 25.853 (a)<br>Appendix F, Part I,<br>(2) (iii): 45 degree                                | Maximum BurnTime, 15 sec                       | 3            | 0    | 0    | 0    | PASS    |
|                                                                                      |                                                                                              | Maximum GlowTime, 10 sec                       | 3            | 0    | 0    | 0    | PASS    |
|                                                                                      | No Penetration                                                                               | 3                                              | None         | None | None | PASS |         |
| Ohio State University Heat                                                           | FAR 25.853 (d)<br>Appendix F, Part IV:                                                       | 2 MinTotal Heat Release,<br>65 KW-min/m²       | 3            | 53   | 60   | 56   | PASS    |
| Release OSU Heat Release,<br>Amdt. 25–116                                            | Max Peak Heat Release Rate,<br>65 KW/min                                                     | 3                                              | 194          | 205  | 199  | FAIL |         |
| FAA Smoke Density                                                                    | FAR 25.853 (d)<br>Appendix F, Part V,<br>FAA Smoke Density,<br>flaming mode, Amdt.<br>25–116 | Maximum Smoke Density, 200                     | 3            | 46   | 112  | 82   | PASS    |
| NBS Smoke Density<br>(Flaming)                                                       | ASTM E 662                                                                                   | Maximum Smoke Density, 200                     | 3            | 46   | 112  | 82   | PASS    |
| NBS Smoke Density<br>(Non-Flaming)                                                   | ASTM F 814                                                                                   | Maximum Smoke Density, 200                     | 3            | 0    | 0    | 0    | PASS    |



**PRODUCT DATA SHEET** 

#### **BMC MOLDING GUIDELINES**

- 1. Preweigh the desired amount of molding compound
- 2. Preheat the molding compound at 71°C  $\pm$  5.5°C (160°F  $\pm$  10°F) for 10 minutes
- 3. Form a mold charge to approximately fit the mold cavity
- 4. Place the charge in the mold cavity
- 5. Cure: 138–154°C (280–310°F). Pinch pressure 250 psi for 15–30 seconds
- 6. Close mold to 2000 psi for 15–30 minutes depending on part thickness
- 7. Post cure at 177°C (350°F) for 1–2 hours

#### TROUBLESHOOTING

#### BLISTERING OR BUBBLES:

- Check mold surface temperature
- Increase molding pressure
- Check for moisture in the material

#### CRACKS OR STRESS MARKS:

- Check mold surface temperature
- Check cure time
- Clean mold surface and re-apply mold release
- Check ejection pressure, slow down ejection

#### FLOW MARKS:

- Close press sooner after charge has been placed in the cavity
- Increase press closure speed
- Check mold surface temperature

#### **RESIN STARVATION:**

- > Check material out time and staging temperature, keep charge material covered, and in plastic bags
- Adjust charge weight
- Clean mold surface and re-apply mold release

#### VOIDS:

- Check charge set-up, shape, and weight
- Check mold surface temperature
- Check preheat time and temperature
- Check press closure time
- Clean mold surface and re-apply mold release

#### THICK PART—UNEVEN DISTRIBUTION OF MATERIAL

- Pre-consolidate thick sections
- Spread molding compound in measured increments
- > Evaluate if press capacity is large enough for even pressure across part



PRODUCT DATA SHEET



#### **GENERAL NOTES**

Note that 25.4 mm, 12.7 mm, 6.35 mm (1," ½," and ¼") material will be slightly different with the longer chop length showing as bulkier then the shorter chop lengths. Generally, the material does not brick up (unless exposed to heat or warmth) and is typically free flowing as received once broken free of the packaging. Some centering or clumping is not uncommon; however, when cool, the material should crumble out of the packaging. The bulk volume of the uncured uncompressed material is ~5X that of the compressed/cured part.

When preheated, a preformed charge will shrink maybe 10% if no pressure of any kind is applied other then gravity. It may debulk down 20–30% if pressure is applied, even hand pressure.

- ▶ The calculated cured density of the material is ~1.483 g/cc (~92.6 lb/ft³)
- > A 1.36 kg (3 lb) bag of 25.4 mm (1") material will measure out to a football shape when in a bag of ~304.8 mm x 254 mm x 127 mm, (~12" x 10" x 5")
- This loosely calculates to a 10 to 1 ratio; however, the bagged material is not rectangular in shape

Revised 07/2019

TORAY\_MS-4H\_PDS\_v2.1\_2023-04-27 Page 5/5

© 2023. All data given is based on representative samples of the materials in question. Since the method and circumstances under which these materials are processed and tested are key to their performance, and Toray Advanced Composites has no assurance of how its customers will use the material, the corporation cannot guarantee these properties. Toray', (Toray) AmberTool\*, (Toray) Cetex\*, (Toray) MicroPly~, and all other related characters, logos, and trade names are claims and/or registered trademarks of Toray Industries Inc. and/or its subsidiary companies in one or more countries. Use of trademarks, trade names, and other IP rights of Toray Industries Inc. without prior written approval by such is strictly prohibited.



#### **Toray Advanced Composites**

18255 Sutter Blvd. Morgan Hill, CA 95037, USA t +1 408 465 8500

2450 Cordelia Road Fairfield, CA 94534, USA Nottingham, NG16 4BE, UK t +1 707 359 3400

Amber Drive, Langley Mill t +44 (0)1773 530899

www.toraytac.com

explore@toraytac-usa.com (North America/Asia/Pacific) explore@toraytac-europe.com (Europe/Middle East/Africa)